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Abstract — An improved finite-element method for the analysis of dielec-
tric wavegnides is formulated in terms of all three components of the
magnetic field H. In this approach, the spurious, nonphysical solutions do
not appear anywhere above the “air-line,” and therefore the present
formulation is very useful for the analysis of the surface-wave modes of
dielectric waveguides. The application of this improved finite-element
method to the dielectric waveguides with perfect electric and magnetic
conductors is also discussed. In particular, the discussion is how to use the
conditions on a boundary surface of a perfect electric or magnetic conduc-
tor whose normal direction is not coincident with the direction of a
coordinate axis. Application of these boundary conditions for perfect
conductors to the dielectric waveguides with planes of symmetry reduces
the matrix size. The strength of this approach to boundary conditions is not
just the economical use of computer memory but the elimination of
spurious solutions through rigorous enforcement of boundary conditions as
well.

I. INTRODUCTION

EVERAL METHODS for the analysis of dielectric

waveguides in Fig. 1 have been proposed, and the
vectorial finite-element formulation in terms of the longitu-
dinal electric (E,) and magnetic (H,) field components,
which enables one to compute accurately the mode spec-
trum of a waveguide with arbitrary cross section, is widely
used [1]-[14]. The most serious difficulty in using the
finite-element analysis, for inhomogeneous dielectric wave-
guides, is the appearance of the so-called spurious,
nonphysical solutions {1]-[14]. The longitudinal E, — H,
formulation contains mathematical singularities [2], [3].
Recently, Mabaya, Lagasse, and Vandenbulcke [12] found
that by explicitly enforcing the continuity of the tangential
components of the transversal fields, at the interface, by
means of Lagrange multipliers, most of the spurious solu-
tions disappear. The disadvantage of this method lies in the
greatly increased complexity of the program and of the
numerical operators that have to be used to enforce those
continuity conditions [12]. Konrad [15] proposed the vec-
torial finite-element formulation in terms of all three com-
ponents (H,, H,, and H,) of the magnetic field H. The
three-component formulation does not contain mathemati-
cal singularities as is the case with the E, — H, formula-
tion, but the spurious solutions do appear [15]-[17]. As
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noted by Davies, Fernandez, and Philippou [16], the spuri-
ous solutions in the three-component formulation do not
satisfy the divergence relation for H, v-H = 0.

In this paper, an improved finite-element method for the
analysis of dielectric waveguides is formulated in terms of
all three components of H. For an abrupt discontinuity in
the permittivity in an inhomogeneous medium, there is an
abrupt change in the electric field E. In such cases, it is
advantageous to solve for the values of H at the nodal
points. In this approach, the spurious solutions do not
appear anywhere above the “air-line” corresponding to
B/k,=11ina B/k, versus k, diagram (a plot of 8/k, on
the vertical axis against k, on the horizontal axis), where
k, is the wavenumber of free space and B is the phase
constant in the z-direction. Therefore, the present formula-
tion is very useful for the analysis of the surface-wave
modes of dielectric waveguides which correspond to the
solutions above the “air-line.”

The application of this improved finite-element method
to the dielectric waveguides with perfect electric and mag-
netic conductors is also discussed. In particular, the discus-
sion is how to use the conditions on a boundary surface of
a perfect electric or magnetic conductor whose normal
direction is not coincident with the direction of a coordi-
nate axis. In the analysis of dielectric waveguides with
planes of symmetry, these boundary conditions for perfect
conductors are used on each plane of symmetry. Applica-
tion of these conditions reduces the matrix size. The
strength of this approach to boundary conditions is not
just the economical use of computer memory but the
elimination of spurious solutions through rigorous en-
forcement of boundary conditions as well.

II. FUNCTIONAL FORMULATION

We consider a dielectric waveguide with arbitrary cross-
section @ in the xy-plane as shown in Fig. 1. With a time
dependence of the form exp( jwt) being implied, Maxwell’s
equations are

VvV X E=— jop,H

vV X H= jwe)[K]E

(1)
)

where w is the angular frequency, ¢, and p, are the
permittivity and permeability of free space, respectively,
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Fig. 1.

Geometry of the problem.

[K] is the relative permittivity tensor, and [-] denotes a
matrix.

By substituting (2) into (1), the following wave equation
is derived:

©)

vX([K]"'VXH)-kZH=0
where '
4

2,2
ky= weghy.

The functional [15] for (3) is known to be
F=ff[(v x H)*([K]'v x H)-k3H*-H| d%
Q
(5)

where the asterisk denotes a complex conjugate. The for-
mulation of (5) does not contain mathematical singularities
as is the case with the £, — H, formulation, but the spuri-
ous solutions do appear [15]-[17]. These spurious solutions
fall into two fairly clear categories [16]. The first one (S;)
can be characterized as follows:

VXH=0, V-H*0 forki=0. (6)
The second group (S,) can be characterized as follows:
VXH#0, v-H#0 forkl>0. (7)

These spurious solutions do not satisfy the relation v-H = 0
[16], [17].
Now, we consider the following functional [18]-[20]:

(8

For the functional (8), the first variation 8F is given by

817":[]96H*

-[v x([K]'v xH)—v(v-H)—kéH]dsz

F=F+ff9(v-H)*(v-H)dsz.

—fFBH*- [nx([K17'v xH)~n(v-H)|dT
(9)

where I' represents the contour of the region @, n is the
outward unit normal vector to I', and the term n X
({K]1 'w X H) corresponds to the tangential components

of the electric field E on I'. The stationarity requirement
0F = 0 shows that '

vX([K]'"vXH)-v(v-H)—kiH=0 (10a)
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as the Euler equation and

nX([(K]"'vXH)=0 on perfect electric conductor

(10b)

n(v-H)=0 on perfect magnetic conductor

(10c)

as natural boundary conditions, since §H* in (9) is arbi-

trary.

Multiplying (10a) by H* and integrating over the region
Q, the following equation is obtained using Green’s for-
mula and the boundary conditions on T':

ffg[(v XH)*([K]'vxH)+(v-H)*(v-H)

—k3H*-H)|d2=0. (11)

In (11), if [K]7! is a positive definite matrix, then v X H
=0 and v-H =0 are satisfied for k3 = 0. Therefore, the
spurious solutions S are eliminated.

Taking divergence of (10a), we obtain

(v2+k2)(v-H)=0. (12)

If the curl of H is not zero for k2 > 0, the eigenvalues k3
of (10) cannot satisfy (12). Therefore, the eigenvectors of
(10) should obey v-H =0 and the spurious solutions S,
are eliminated.

When v X H =0 for k2 > 0, (8) may have the solutions
other than those of (3) [19]. This new group (S;) char-
acterized by

VXH=0, V-H#0 forki>0 (13)

obeys the following equations:
H=v¢ (14a)
(v2+k2¢=0  inregion Q (14b)
d¢/dn=0 on perfect electric conductor  (14¢)

6=0

where ¢ is the scalar field. The magnetic field H of (14)
satisfies the stationarity requirement 8 = 0, but the diver-
gence of H is not zero. Therefore, in the finite-element
analysis using (8), the spurious solution S, which are not
included in (5) do appear. Fortunately, the solutions S; are
equivalent to the TE modes of “hollow” waveguides (re-
place ¢ in (14b)-(14d) with H,) and the appearance is
limited to the region B8/ky <1. They do not appear any-
where above the “air-line.” Therefore, if one is interested
only in the solutions in the region B/k,>1 which corre-
spond to the surface-wave modes of dielectric waveguides
[41-[7), [10]-[13], [17], [21], [22), the appearance of the
solutions S; is not a serious problem. The value of (14) is
that it enables us to evaluate the behavior of the spurious
solutions S, of the finite-clement method based on (8). On
the other hand, the spurious solutions S, and S, of the
finite-element method based on (5) are unpredictable.

on perfect magnetic conductor (14d)

II1.

Dividing the cross-section £ of the waveguide with a
diagonal permittivity tensor into a number of second-order

FINITE-ELEMENT DISCRETIZATION
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triangular elements in Fig. 1, the magnetic fields within
each element are defined in terms of the magnetic fields at
the corner and midside nodal points:

H=[N]"{H} exp(- jBz) (15)
where
[ (H,},
(H},=|{H,}, (16)
| {H.}.
(N} {0} {0}
[N]=} {0} (N} {0} (17)
| {0} {0} J{N}
{N}=[N1 N, N, N‘; N; N6]T. (18)

Here {H,}., {H,}.,.and { H,}, are magnetic field vectors
corresponding to the nodal points within each element, {0}
is a null vector, T, {-}, and {-}” denoté a transpose, a
column vector, and a row vector, respectively, and the
shape functions N, to N, are given by

N,=L,2L,—-1) (19a)
N,=L,(2L,~1) (19b)
N,=Ly(2L,—1) (19¢)
N,=4L,L, (19d)
N,=4L,L, (19¢)
N,=4L,L, (191)

with the area coordinates L;, L,, and L, [4], [10]. The
relation equation between the area coordinates and Carte-
sian coordinates is given by

x X, Xy X3 || Ly
yi=|»n »n »nl|ll (20)
1 1 1 1||L
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where
[S1.= [[[BI[K] [B]" dxdy (22)
[7].= [[INT[N] dxay (23)
(1= f[{c}(c) dxay (24)
[ (0 - B{N}  —3{N}/dy
[B]=| JB{N} (0} 3{N}/0x
| JO{N}/dy —jo{N}/ox {0}
(25)
[ 9{N}/dx
{Cy=|9{N}/3y]|. (26)
B{N}
The functional for the whole region Q is given by
F={H)"([S]+[U]-K3[T]){H} (27)

where { H} is the nodal magnetic field vector and, for
loss-free media, [S], [T], and [U] are real, symmetric
matrices. Variation of (27) with respect to the nodal vari-
ables leads to the following eigenvalue problem:

([sl+[uD{H}-KTHH}={0}.  (28)
Using the functional (5), we obtain the following eigen-
value problem:

[SH{H}-k[T]{H} = {0} (29)

IV. BOUNDARY CONDITIONS

In (27), the nodal magnetic field vector { H } should be
forced to satisfy the boundary conditions on I' in Fig. 1,
where the unit vector » normal to I lies at an angle 4 from
the x-axis in the xy-plane. The functional (27) can be
rewritten as

F=[(m)" (m)" (B} (£ {H,)" {#)]

where (x,, y,) are the Cartesian coordinates of the vertex
k (k=1,2,3) of the triangle.

Substituting (15) into the functional (8), for each element
we obtain

F={H)[S]1.(H) . +{H}][UL{H},
~kg{H)/[T]{H}, (21)

(4] [4,] [4.) [4e] [4] (4.1 |[ (5]
[A.vx [Ayy] [Ayz} [Ayx’] [Ayy’] [AyZ’ { Hy }
[4,.] [4.,] [4.] [4.1 [4.,] [4.] || (H)} (30)
[4,] [4.,] (4] [40] [4e] [Ae] || {He)
[Ay’X] [AY’y] [Ay’Z] [Ay’X’] [Ay’y'] [Ay’z ] { Hy’ }
4] (4] (4] (4] (4] (4] || (')

where the components of the { H,} vector are the values of
the magnetic field H, at all nodal points in Q except I', the
components of the { H,.} vector arethe values of H, at all
nodal pointson I', and [4,,],[4,,],---, and [A4_.,.] are the
submatrices of [4]=[S]+[U]—-k§{T].

Using the boundary condition for the perfect electric
conductor n-H = 0, namely

{(H,}=—tan8{H,} (31)
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on I' and minimizing (30), we obtain

(Al [4,] (4] [4,] (4]
[AyX] [Ayy] [AyZ] [A_yy] [AyZ’]
(4.1 [4,] [4.] [4,] [4.]
4] (4] [40] (4] (4]
| [ (H.) ]
{H,)}
{#} [={0} (32
{H,}
| {H.} |
where
[A_yy] = [Ay'y’] _tana([AX’y’] + [Ay’X’])+tan20[Ax’x']
(33a)
[E;y, =[4,, ]-tanb[4,.], j=x,y,z,2 (33b)
[A_y,j]=[Ay/j]—tan0[Ax,j], Jj=x,y,z,z”. (33c)

Using the boundary condition for the perfect magnetic
conductor n X H = 0, namely

{H,}=cot6{H,}
{#,}={0}

on I' and minimizing (30), we obtain

(34a)
(34b)

[4.] [4,] (4.1 [4,] || {#.)
[AyXJ [Ayy_ [AyZ] [A_yy] {Hy} = (0)

[4.] [4,] [4.] [4,] || (&)

(4] (4] (4] [4,] ]| (#,)
- (35)

where o
[A_yy] =[4,,]+cot 0([Ax,y,] + [Ay,x,])+cot20[Ax,x,]
(36a)
[4,]=[4),]+cotb]4,.],  j=x,y.z (36b)
[4,,]=[4,,]+cot8[4,,], Jj=x,y,z.  (360)

When tanf — oo in (33) and cotf —» oo in (36), {H,},
[(4,.,] [4,,], and [4,.;] should be replaced by {H .},
(A, ] [4;], and [A4,.], respectively. It should be noted
that (32) and (35) can be used to obtain the dispersion
characteristics of dielectric waveguides with planes of sym-
metry.

V. NUMERICAL RESULTS

First, let us consider a half-filled dielectric waveguide as
shown in Fig. 2, where n is the refractive index. We
subdivide one half of the cross section into second-order
triangular elements. The solid and dashed lines in Fig. 2
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Fig. 2. Solutions of (28) and (29) for a rectangular waveguide half-filled
with dielectric of refractive index y1.5 .

z X

Fig. 3. Finite-clement division of an embedded rectangular waveguide
and an embossed rectangular waveguide.

represent the solutions of the improved finite-element pro-
gram in (28), while the solutions of the earlier finite-ele-
ment program in (29) are indicated by the dots, where the
plane of symmetry is assumed to be the perfect magnetic
conductor. Computed results (solid lines) for the LSM,,
and LSE,, modes [23] agree well with the exact results
[23]. Spurious solutions S; (dashed lines) corresponding to
the solutions of (14) appear only in the region B/ky<1.
The solutions S, with cutoff frequencies kW=, V2,
and V57 are equivalent to the TE,;,, TE,;, and TE,,
modes of a “hollow” waveguide of square cross section,
respectively. It is found that when (29) is used the spurious
solutions are scattered all over the propagation diagram.
Next, let us consider an embedded rectangular wave-
guide [4], [5], [10], [12] and an embossed rectangular wave-
guide [4], [10], [12]. We subdivide one half of the cross
section into second-order triangular elements as shown in
Fig. 3, where W and 1 are the width and the thickness of a
rectangular core, respectively, and boundaries BC, CD,
and D4 are assumed to be perfect electric conductors. Fig.
4 shows the dispersion characteristics for the E{ mode [21]

of these waveguides, where v = kyt/n} —n2 /7 and b=
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Fig. 4. Dispersion characteristics of an embedded rectangular wave-
guide and an embossed rectangular waveguide.
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Fig. 5. Dispersion characteristics of an anisotropic embedded rectangu-

lar waveguide.

[(B/ky)? — n]/(n? — n3). For the E}, mode, the boundary
AB in Fig. 3 (plane of symmetry) becomes the perfect
magnetic conductor. Qur results agree well with the finite-
element solutions [10} in the E, — H, formulation. Fig. 5
shows the dispersion characteristics for the E}; mode of an
anisotropic embedded rectangular waveguide. Our results
agree well with the finite-element solutions [5] in the F, —
H, formulation. Note that the spurious solutions are in-
cluded in the solutions of the finite-element method in the
E,— H, formulation and they cannot be eliminated
mathematically [1]-[14]. The E, — H, formulation contains
mathematical singularities, and the actual solutions are
plotted as a continuous interpolated curve between points
sufficiently removed from the singularity to be unaffected
by it [2], [3],.[8], [9], [11]. In order to avoid confusion, such
spurious solutions in the E,— H, formulation are not
shown in Figs. 4 and 5.

Lastly, let us consider a dielectric square waveguide [4],
[21], [22] with four planes of symmetry. We subdivide one
quarter or one eighth of the cross section into second-order

triangular elements as shown in Fig. 6, where boundaries -

CD and DA are assumed to be perfect electric conductors

and the conditions on boundaries 4B, BC, and DB (planes

of symmetry) are given in Table I. Fig. 7 shows the
dispersion characteristics for the E.,” modes [21] of this
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z

Fig. 6. Finite-element division of a dielectric square waveguide.

" TABLEI
BOUNDARY CONDITIONS FOR A DIELECTRIC SQUARE WAVEGUIDE

Boundaries AB BC DB
8 E 180° 270° 135°
E: éerfect
electric Hx=0 Hy=0 Hx=Hy
Boundary conductor
conditions M: perfect H =0 Hx=0 x=-—H
magnetic Y Y
conductor H_=0 H_=0 H =0
z 2 z
x
Eodd,odd E M
Y
E(-:ven,even
X
even,even
y M E _—
Eodd,odd
Modes %
Eeven,odd M M M
Y
Eodd,evei’x M M E
X
Eodd,even E E M
Y
Eeven,odd E E B

waveguide. Our results agree well with the results of the
collocation method [22]. For the Ej;” and. EJ3Y modes
whose fields satisfy the boundary condition for the perfect
electric or magnetic conductor on the boundary DB, the
results of Fig. 6(b) are identical to those of Fig. 6(a). This
fact proves the validity of (32) and (35). The strength of
this approach to boundary conditions is not just the eco-
nomical use of computer memory but the elimination of
spurious solutions through -rigorous = enforcement of
boundary conditions as well. The dots in Fig. 8 represent
the solutions of the earlier finite-element program in (29),
while the results of the improved finite-element program in
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Fig. 8. Solutions of (29) for the waveguide configuration in Fig. 7.
Boundary conditions are H, =0 and H,= H,=0on AB and BC in
Fig. 6(a), respectively.

(28) are indicated by a solid line (the E{§ mode in Fig. 7),
where the conditions on boundaries AB and BC in Fig.
6(a) are H, =0 and H, = H,= 0, respectively. It is found
that when (29) is used, numerous spurious solutions ap-
pear. '

In Figs. 4, 5, and 7, the spurious solutions do not appear
because the spurious solutions (S;) appear only below the
“air-line,” and the surface-wave modes (the E,7” modes)
of dielectric waveguides of Figs. 4, 5, and 7 correspond to
the solutions above the “air-line.”

VI

An improved finite-element method for the analysis of
dielectric waveguides with a diagonal permittivity tensor
was formulated in terms of all three components of the
magnetic field H. In this approach, the spurious, nonphysi-
cal solutions do not appear anywhere above the “air-line,”
and therefore the present formulation is very useful for the
analysis of the surface-wave modes of dielectric wave-
guides. The application of this improved finite-element
method to the dielectric waveguides with perfect electric
and magnetic conductors was also discussed.

This approach can be applied easily to the anisotropic
waveguides having a permittivity tensor with nonzero off-
diagonal elements.

CONCLUSION
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Analysis of Noise Upconversion in
Microwave FET Oscillators

HEINZ J. SIWERIS anp BURKHARD SCHIEK

Abstract — The upconversion of low-frequency noise in microwave FET
oscillators is investigated. The theoretical analysis is presented in two
forms, a general and a simplified one. The latter version yields closed-form
expressions for amplitude and phase noise, which are discussed with regard
to the physics of the upconversion process. Application of the method is
demonstrated with an example.

1. INTRODUCTION

FTER BEING ALREADY established as an im-
portant device for microwave amplifiers, both for
low-noise and power applications, the gallium arsenide
field-effect transistor (GaAs FET) has also been used in
oscillators to a steadily increasing extent during the last
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few years. When compared to other solid-state devices
suitable for microwave sources, the FET offers the
advantages of high efficiency and convenient biasing re-
quirements. However, considering the excellent noise per-
formance of FET amplifiers, the noise properties of FET
oscillators are only moderate. Therefore, transferred-elec-
tron oscillators are still preferred for applications where
noise performance is critical. ‘
The reason for the different noise performance of FET’s
in amplifiers on the one side and in oscillators on the other

. side has beer identified to be the strong low-frequency (or

1/f) noise of the device. This kind of noise is insignificant
in all linear RF applications like small-signal amplifiers. In
oscillators, however, since the FET is operated under
large-signal conditions, the low-frequency noise is upcon- .
verted due to the device nonlinearities and gives rise to
noise sidebands around the RF carrier signal in the output
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