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Abstract —An improved finite-element method for the analysis of dielec-

tric wavegnides is fornndated in terms of all three components of the

m%uetic field H. In this approach, the spurious,nonphysicalsolutions do
not appear anywhere above the “air-line,” and therefore the present

formulation is very useful for the analysis of the surface-wave modes of

dielectric wavegnides. The application of this improved finite-element

method to the dielectric wavegnides with perfect electric and magnetic

conductors is also discussed. In particular, the discussion is how to use the

condkions on a boundary surface of a perfect electric or magnetic condnc-

tor whose normal direction is not coincident with the direction of a

coordinate axis. Application of these boundary conditions for perfect

conductors to the dielectric wavegnides with planes of symmetry reduces

the matrix size. The strength of this approach to boundary conditions is not

jnst the economical use of computer memory but the elimination of

spurious solutions through rigorons enforcement of boundary conditions as

well.

I. INTRODUCTION

sEVERAL METHODS for the analysis of

waveguides in Fig. 1 have been proposed,

dielectric

and the

vectorial finite-elemen~ formulation in terms of the longitu-

dinal electric ( 17z) and magnetic (Hz) field components,

which enables one to compute accurately the mode spec-

trum of a waveguide with arbitrary cross section, is widely

used [1]–[14]. The most serious difficulty in using the

finite-element analysis, for inhomogeneous dielectric wave-

guides, is the appearance of the so-called spurious,

nonphysical solutions [1]–[14]. The longitudinal EZ – Hz
formulation contains mathematical singularities [2], [3].

Recently, Mabaya, Lagasse, and Vandenbulcke [12] found

that by explicitly enforcing the continuity of the tangential

components of the transversal fields, at the interface, by

means of Lagrange multipliers, most of the spurious solu-

tions disappear. The disadvantage of this method lies in the

greatly increased complexity of the program and of the

numerical ‘operators that have to be used to enforce those

continuity conditions [12]. Konrad [15] proposed the vec-

torial finite-element formulation in terms of all three com-

ponents (H., HY, and Hz) of the magnetic field H. The
three-component formulation does not contain mathemati-

cal singularities as is the case with the E, – Hz formula-

tion, but the spurious solutions do appear [15]–[17]. As
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noted by Davies, Fernandez, and Philippou [16], the spuri-

ous solutions in the three-component formulation do not

satisfy the divergence relation for H, v. H = O.
In this paper, an improved finite-element method for the

analysis of dielectric waveguides is formulated in terms of

all three components of H. For an abrupt discontinuity in

the permittivity in an inhomogeneous medium, there is an

abrupt change in the electric field E. In such cases, it is

advantageous to solve for the values of H at the nodal

points. In this approach, the spurious solutions do not

appear anywhere above the “air-line” corresponding to

~/kO = 1 in a /3/k0 versus kO diagram (a plot of l?/kO on

the vertical axis against kO on the horizontal axis), where

k. is the wavenumber of free space and P is the phase

constant in the z-direction. Therefore, the present formula-

tion is very useful for the analysis of the surface-wave

modes of dielectric waveguides which correspond to the

solutions above the “air-line.”

The application of this improved finite-element method

to the dielectric waveguides with perfect electric and mag-

netic conductors is also discussed. In particular, the discus-

sion is how to use the conditions on a boundary surface of

a perfect electric or magnetic conductor whose normal

direction is not coincident with the direction of a coordi-

nate axis. In the analysis of dielectric waveguides with

planes of symmetry, these boundary conditions for perfect

conductors are used on each plane of symmetry. Applica-

tion of these conditions reduces the matrix size. The

strength of this approach to boundary conditions is not

just the economical use of computer memory but the

elimination of spurious solutions through rigorous en-

forcement of boundary conditions as well.

II. FUNCTIONAL FORMULATION

We consider a dielectric waveguide with arbitrary cross-

section 0 in the xy-plane as shown in Fig. 1. With a time

dependence of the form exp (jut) being implied, Maxwell’s

equations are

vXE=–jupoH (1)

vX17= joto[K]E (2)

where u is the angular frequency, c~ and w~ are the
permittivity and permeability of free space, respectively,
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Fig. 1. Geometry of the problem.

[K] is the relative permittivity tensor, and [.] denotes a

matrix.

By substituting (2) into (l), the following wave equation

is derived:

vx([K]-lvx H)–k;H=o (3)

where

k;=u2cOp0. (4)

The functional [15] for (3) is known to be

F= JJ[( vxH)*. ([ K]-lvx H)–k@*.H]dQ
Q

(5)

where the asterisk denotes a complex conjugate. The for-

mulation of (5) does not contain mathematical singularities

as is the case with the E, – Hz formulation, but the spuri-

ous solutions do appear [15]–[17]. These spurious solutions

fall into two fairly clear categories [16]. The first one (SJ

can be characterized as follows:

VXH=O, v.H+O fork~=O. (6)

The second group (S2) can be characterized as follows:

VXH+O, v.H+O for k;> O. (7)

These spurious solutions do not satisfy the relation v. H = O
[16], [17].

Now, we consider the following functional [18] -[20]:

F= F+ JJ(v.H)*(v.H)df2. (8)
Q

For the functional (8), the first variation Si is given by

[vx([K]-lvx H)-v(vH)-k@]di2

-~c5H*.[nx([K]-lv xH)-n(vH)]dr

(9)

where I’ represents the contour of the region Q, n is the

outward unit normal vector to 17, and the term n x

([K] - lv x H) corresponds to the tangential components

of the electric field E on I’. The stationarity requirement

8~ = O shows that

vx([K]-lv XH)–v(v-H)–k~H=O (lOa)

as the Euler equation and

nx([K]-lvx H)=O on perfect electric conductor

(lOb)

n(v. H)=O on perfect magnetic conductor
(1OC)

as natural boundary conditions, since 13H* in (9) is arbi-

trary.

Multiplying (lOa) by H* and integrating over the region

Q, the following equation is obtained using Green’s for-

mula and the b&ndary conditions on I’: -

J.i[(VXH)*. ([ K]-lVXH)+( VOH)*(V.H)
a

-’W*”H)l~Q=o (11)
In (11), if [K]- 1 is a positive definite matrix, then v x H
= O and v-H= O are satisfied for k;= O. Therefore, the

spurious solutions S1 are eliminated.

Taking divergence of (lOa), we obtain

(v2+k;)(vH)=0. (12)

If the curl of H is not zero for k;> O, the eigenvalues k;
of (10) cannot satisfy (12). Therefore, the eigenvectors of

(10) should obey v H = O and the spurious solutions S’a

are eliminated.

When v X H = O for k; >0, (8) may have the solutions

other than those of (3) [19]. This new group ( S3) char-

acterized by

VXH=O, v.H#O for k;> O (13)

obeys the following equations:

H=vq (14a)

(v2+k;)@=0 in region O (14b)

th)lan = o on perfect electric conductor (14c)

+=(-J on perfect magnetic conductor (14d)

where @ is the scalar field. The magn~tic field H of (14)
satisfies the stationarity requirement i3F = O, but the diver-

gence of If is not zero. Therefore, in the finite-element

analysis using (8), the spurious solution S3 which are not

included in (5) do appear. Fortunately, the solutions S3 are

equivalent to the TE modes of “hollow” waveguides (re-

place @ in (14b)–(14d) with H=) and the appearance is

limited to the region @/kO <1. They do not appear any-

where above the “air-line.” Therefore, if one is interested

only in the solutions in the region /3/k0 >1 which corre-

spond to the surface-wave modes of dielectric waveguides

[4]-[7], [10] -[13], [17], [21], [22], the appearance of the

solutions S3 is not a serious problem. The value of (14) is

that it enables us to evaluate the behavior of the spurious

solutions S3 of the finite-element method based on (8). On

the other hand, the spurious solutions S1 and S2 of the

finite-element method based on (5) are unpredictable.

III. FINITE-ELEMENT DISCRETIZATION

Dividing the cross-section Q of the waveguide with a

diagonal permittivity tensor into a number of second-order
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triangular elements in Fig. 1, the magnetic fields within

each element are defined in terms of the magnetic fields at

the corner and midside nodal points:

ll=[fV]’{H}, exp(-j~z) (15)

where

[1

{HX},

{H}e= {%}= (16)

{Hz}c

‘N]=[% :} :}1 ’17)
{N}=[N1 N, N3 N4 N5 N6 ] ‘. (18)

Here { Hx },, { H.V} .,. and {H=}. are magnetic field vectors
corresponding to the nodal points within each element, {O}

is a null vector, T, {.}, and {.} ~ denote a transpose, a

column vector, and a row vector, respectively, and the

shape functions NI to Nb are given by

N1 = L1(2L1 –1) (19a)

N2 = LZ(2LZ -1) (19b)

N~ = L~(2L3 –1) (19C)

N5 = 4LZLJ (19e)

with the area coordinates Ll, Lz, and L~ [4], [10]. The

relation equation between the area coordinates and Carte-

sian coordinates is given by

11=[:w:] ’20)
~=[{HX}’ {H,}T {HZ}T

/27

where

[s]e=JJ[B]*[K]; ’[ B]~dxdy (22)
e

[T]e=~~[N]*[N]’dXdY (23)
e

[U]e=jj{c}{c}’dxdy (24)
e

[

{o} –jB{N} –d{N}/i3y

[B]= jP{N} {o} (9{ N}/dx

j6’{N}/ay –j8{N}/ih {o} 1

(25)

[1
i3{N}/dx

{c}= d{ N}/~Y . (26)

~{N}

The functional for the whole region O is given by

P= {H}~([s]+[u]-k; [T]){H} (27)

where { H } is the nodal magnetic field vector and, for

loss-free media, [S], [T], and [U] are real, symmetric

matrices. Variation of (27) with respect to the nodal vari-

ables leads to the following eigenvalue problem:

([s]+ [u]){ H}-k;[T]{H}= {o}. (28)

Using the functional (5), we obtain the following eigen-

value problem:

[S]{ H}-k;[T]{H}= {O} (29)

IV. BOUNDARY CONDITIONS

In (27), the nodal magnetic field vector {H} should be

forced to satisfy the boundary conditions on I’ in Fig. 1,

where the unit vector n normal to r lies at an angle 6’ from

the x-axis in the xy-pkme. The functional (27) can be

rewritten as

{HX/}~ {HY}~ {Hzr}T]

[~xxl [f%] [~xzl [~xxl [4Y] [~.xz] “

[-’k] [f%] [L] L%’] [%’] [%]
[Azx] [Azy] [~zzl [~zxl [~=y’] [~zz’1

[~xxl [fLy] [~xzl [~xkl [4/] [~x=l

[+] [%] [Ad [4X’] [%’] L%]

[~zkl [~=j’] [~zzl [~zxl [Ay] [~z,l

{HX}

{H,}

{Hz}

{ HX }

{ H,}

{ Hz}

(30)

where the components of the {H, } vector are the values of

where (x,,, v,, ) are the Cartesian coordinates of the vertex the magnetic field H, at all nodal points in !2 except r, the.,% ..&/

k (k= 1,2,3) of the triangle. components of the {H,, } vector are the values of H, at all

Substituting (15) into the functional (8), for each element nodal points on r, and [~..l, [A. 1,0”., and [~,,.,:

we obtain submatrices of [A]= [S]+[U]– k~[T].
Using the boundary condition for the perfect

#e={ H}~[S], {H}. +{ H}~[U]. {H}. conductor n. H = O, namely

are the

electric

(31)-k;{ H}:[T]e{H}. (21) {HX/}=-tanO{HY}
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on r and minimizing (30), we obtain

[

[~xxl [iy] [~xzl [Z+] [~xzl

[Ax] [41 k] [a’] [A.’] 1

1
[J4,x] [A=y] [Azl [Zy] [~zil

[%.1 [<’,1 [G] [LA [<’,’1

[~,x] [Azy] [Az,] [Xzy] [A=z]
I

H

{HX}

{H,}

. {H,} = {O} (32)

{ Hy/}

{ H,}

where

[~Y] = [AYY] -tanO([AXY] + [AYX])+tan2f7[z tXXr]

[~y] = [~jy] -tand[Ajx],

[%] = [%+tanw.,1

Using the boundary condition

conductor n x H = O, namely

(33a)

j=x, y,z, z’ (33b)

j=x, y, z, z’. (33C)

for the perfect magnetic

{HX/}=cot8{Hy/}

{Hz,} = {O}

on 17 and minimizing (30), we obtain

!
[~xxl [4,] [4=1 [G]

L%X1 [%] [%] [G]

b,.] [A=y] [~zzl [L]

[Z.] [z,] [z,] [%,1

where

1
{HX}

{H,}

{Hz}

{HY/}

2.0

6

1.0

0
0 5.0 10.0

koW

Fig. 2. Solutions of (28) and (29) for a rectangular waveguide half-filled

with dielectric of refractive index ~.

(34a)

(34b)

= {o}

(35)

[q] = [Ay.y]+Cot e([Ax.yr] + [Ayx])+cot’o[AxJx]

(36a)

[~Y] = [AjY]+coto[~,X], j=x, y,z (36b)

[Zj] = [AY,] +coto[~~,], j=x, y, Z. (36c)

When tand ~ co in (33) and cot 6 ~ m in (36), {H,,},

[1,,], [<Y,], and [~y,j] should be replaced by {Hz,},

[AX,X.1, [AJX], and [AX,j], respectively. It should be noted
that (32) and (35) can be used to obtain the dispersion

characteristics of dielectric waveguides with planes of sym-

metry.

V. NUMERICAL RESULTS

First, let us consider a half-filled dielectric waveguide as

shown in Fig. 2, where n is the refractive index. We

subdivide one half of the cross section into second-order

triangular elements. The solid and dashed lines in Fig. 2

Fig. 3. Finite-element division of an embedded rectangular waveguide

and an embossed rectangular waveguide.

represent the solutions of the improved finite-element pro-

gram in (28), while the solutions of the earlier finite-ele-

ment program in (29) are indicated by the dots, where the

plane of symmetry is assumed to be the perfect magnetic
conductor. Computed results (solid lines) for the LSMPq
and LSEPq modes [23] agree well with the exact results

[23]. Spurious solutions S3 (dashed lines) corresponding to

the solutions of (14) appear only in the region ~/kO <1.

The solutions S3 with cutoff frequencies koW = m, fir,

and &n- are equivalent to the TE 10, TEII, and TEIZ
modes of a “hollow” waveguide of square cross section,

respectively. It is found that when (29) is used the spurious

solutions are scattered all over the propagation diagram.

Next, let us consider an embedded rectangular wave-

guide [4], [5], [10], [12] and an embossed rectangular wave-

guide [4], [10], [12]. We subdivide one half of the cross
section into second-order triangular elements as shown in

Fig. 3, where W and t are the width and the thickness of a

rectangular core, respectively, and boundaries BC, CD,
and DA are assumed to be perfect electric conductors. Fig.

4 shows the dispersion characteristics for the E& mode [21]

of these waveguides, where v = kOt~~/v and b =
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Fig. 4. Dispersion characteristics of an embedded rectangular wave-

guide and an embossed rectangular waveguide.
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Fig. 5. Dispersion charactensticsof ananisotropic embedded rectangu-

lar waveguide.

[(~/ko)2 – n~]/(n~ – n;). For the EL mode, the boundary
AB in Fig. 3 (plane of symmetry) becomes the perfect

magnetic conductor. Our results agree well with the finite-

element solutions [10] in the E=– HZ formulation. Fig. 5

shows the dispersion characteristics for the E/’ mode of an

anisotropic embedded rectangular waveguide. Our results

agree well with the finite-element solutions [5] in the EZ –
Hz formulation. Note that the spurious solutions are in-

cluded in the solutions of the finite-element method in the

E= – HZ formulation and they cannot be eliminated

mathematically [1] –[14]. The E= – Hz formulation contains

mathematical singularities, and the actual solutions are

plotted as a continuous interpolated curve between points

sufficiently removed from the singularity to be unaffected

by it [2], [3], [8], [9], [11]. In order to avoid confusion, such

spurious solutions in the EZ – Hz formulation are not

shown in Figs. 4 and 5.

Lastly, let us consider a dielectric square waveguide [4],

[21], [22] with four planes of symmetry. We subdivide one

quarter or one eighth of the cross section into second-order

triangular elements as shown in Fig. 6, where boundaries

CD and DA are assumed to be perfect electric conductors

and the conditions on boundaries AB, BC, and DB (planes

of symmetry) are given in Table I. Fig. 7 shows the
dispersion characteristics for the E~;Y modes [21] of this

231
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,/
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Fig. 6. Finite-element division of a dielectric square waveguide.

TABLE I

BOUNDARY CONDITIONS FOR A DIELECTRIC SQUARE WAVEGUIDE

Boundaries IAB]BCIDB

9 I 180” I 270” ] 135”
I I I

“’sw-
~x

even, even
M E —

~Y
odd , odd

Modes
Ex M M M

even, odd

~Y
odd, even

M M E

~x
E E M

odd, even

~Y
even, odd

E E E

waveguide. Our results agree well with the results of the

collocation method [22]. For the E~i Y and Ef~ Y modes

whose fields satisfy the boundary condition for the perfect

electric or magnetic conductor on the boundary DB, the

results of Fig. 6(b) are identical to those of Fig. 6(a). This

fact proves the validity of (32) and (35). The strength of

this approach to boundary conditions is not just the eco-

nomical use of computer memory, but the elimination of

spurious solutions through rigorous enforcement of

boundary conditions as well. The dots in Fig. 8 represent

the solutions of the earlier finite-element program in (29),
while the results of the improved finite-element program in
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Fig. 7. Dispersion characteristics of a dielectric square waveguide.
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Fig. 8. Solutions of (29) for the waveguide configuration in Fig. 7.
Boundary conditions ace Hx = O and Hx = Hz = O on AB and BC in
Fig. 6(a), respectively.

(28) are indicated by a solid line (the Efi mode in Fig. 7),

where the conditions on boundaries AB and BC in Fig.

6(a) are HX = O and HX = H, = O, respectively. It is found

that when (29) is used, numerous spurious solutions ap-

pear.

In Figs. 4, 5, and 7, the spurious solutions do not appear

because the spurious solutions (&) appear only below the

“air-line,” and the surface-wave modes (the E;; y modes)

of dielectric waveguides of Figs. 4, 5, and 7 correspond to

the solutions above the “air-line.”

VI. CONCLUSION

An improved finite-element method for the analysis of

dielectric waveguides with a diagonal permittivity tensor

was formulated in terms of all three components of the

magnetic field H. In this approach, the spurious, nonphysi-

cal solutions do not appear anywhere above the “air-line,”

and therefore the present formulation is very useful for the

analysis of the surface-wave modes of dielectric wave-

guides. The application of this improved finite-element

method to the dielectric waveguides with perfect electric

and magnetic conductors was also discussed.

This approach can be applied easily to the anisotropic

waveguides having a permittivit y tensor with nonzero off-

diagonal elements.
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Analysis of Noise Upconversion in
Microwave FET Oscillators

HEINZ J. SIWERIS AND BURKHARD SCHIEK

,4fmtruiX -The upeonversion of Iow-freqnency noise in microwave FET

oscillators is investigated. The theoretical anafysis is presented in two

forms, a generaf and a simpfffied one. The latter version yields closed-form

expressions for amplitude and phase noise, which are discussed wfth regard

to the physics of the upeonversion process. Application of the method is

demonstrated with an example.

I. INTRODUCTION

A FTER BEING ALREADY established as an im-

portant device for microwave amplifiers, both for

low-noise and power applications, the gallium arsenide

field-effect transistor (GaAs FET) has also been used in

oscillators to a steadily increasing extent during the last

Manuscript received June 15, 1984; revised October 30, 1984. This
work was supported in part by the Deutsche Forschungsgemeinschaft
(DFG).

The authors are with the Institut Fur Hoch- und Hochstfrequenztech-
nik, Rnhr-Universitat Bochurn, 4630 Bochum 1, West Germany.

few years. When compared to other solid-state devices

suitable for microwave sources, the FET offers the

advantages of high efficiency and convenient biasing re-

quirements. However, considering the excellent noise per-

formance of FET amplifiers, the noise properties of FET

oscillators are only moderate. Therefore, transferred-elec-

tron oscillators are still preferred for applications where

noise performance is critical.

The reason for the different noise performance of FET’s

in amplifiers on the one side and in oscillators on the other

side has beerl identified to be the strong low-frequency (or

l/f) noise of the device. This kind of noise is insignificant

in all linear RF applications like small-signal amplifiers. In
oscillators, however, since the FET is operated under

large-signal conditions, the low-frequency noise is uncon-

verted due to the device nonlinearities and gives rise to

noise sidebands around the RF carrier signal in the output
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